
  

  

Abstract—Numerous studies on motor control in humans 
and primates have suggested that the Central Nervous System 
(CNS) generates and controls continuous movement via 
discrete, elementary units of movement or submovements. 
While most studies are based on analysis of kinematic data, 
investigations of neural correlates have been lacking. To fill this 
gap we recorded and analyzed kinematic and high-density 
electroencephalographic (64-channel EEG) data from three 
right-handed normal adults during a reaching task that 
required online movement corrections. Each kinematic 
submovement was accompanied by stereotyped scalp maps. 
Furthermore, the peaks of event-related potentials (ERP) 
recorded at electrode C1 (over contralateral motor cortex) 
were time-locked to kinematic submovement peaks. These 
results provide further evidence for the hypothesis that the 
CNS generates and controls continuous movement via discrete 
submovements. Applications include design of quantitative 
outcome metrics for motor disorders of neurological origin 
such as stroke and Parkinson’s disease. 

I. INTRODUCTION 
 key feature of the motor system is the ability to correct 
movement online as unexpected changes in the motor 
task specifications arise. To this end, the CNS must be 

able to modify ongoing motor commands, but the exact 
mechanisms underlying such process remain unclear. 
Several studies have suggested submovements or elementary 
units of movement as a possible mechanism used by the 
CNS to generate complex motor behavior, including online 
corrections. According to this hypothesis, the CNS does not 
control continuous movement in a continuous fashion but 
rather via generating and combining discrete elements 
whose features (e.g. amplitude and duration) can be 
modulated depending on the motor task. Submovements 
have been observed in a variety of motor tasks, including 
reaching under accuracy constraints [1] [2] [3] [4], 
handwriting [5], learning of new motor tasks [6] [7] [8] and 
are particularly evident in movements performed by stroke 
patients during the early phase of recovery [7]. While most 
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studies have focused on analysis of kinematic data, 
investigations of neural correlates of kinematic 
submovements have been sparse. This study is part of a 
series of studies by our group aimed at understanding neural 
mechanisms underlying submovements for the purpose of 
designing more effective robot-assisted neurorehabilitation 
treatments where the therapeutic action is controlled by 
patient’s motor intentions [8] [9] [10] and for enhancing our 
understanding of the neural control of movement [11] [12] 
[13]. Here we sought to explore whether a signature of 
submovements can be found in EEG by simultaneously 
recording EEG and kinematic data from healthy subjects 
during a double step target displacement task [14] [15] 
which is known to evoke online corrections of movement 
trajectories. We hypothesized that if submovements have a 
discrete nature, then underlying neural activity as recorded 
by EEG should also be characterized by stereotyped spatio-
temporal features, time-locked to features of kinematic 
submovements. 

II. MATERIALS AND METHODS  

A. Hardware 
An InMotion3 wrist robot (Interactive Motion Technologies, 
Watertown, MA) designed for clinical neurological 
applications, was used in this study. The robot had 3 
actuated degrees-of-freedom, namely radial/ulnar deviation, 
flexion/extension, and pronation/supination. A complete 
description of the hardware is reported in [16]. The angular 
positions were acquired digitally (sampling frequency fs = 
1000 Hz, 16-bit quantization). 
EEG was recorded continuously with a sampling rate of 
1024 Hz using a 64-channel Active-Two EEG system 
(BioSemi, Amsterdam, the Netherlands).  
 
 
 
 
 
 
 
 
 
                        Figure 1: Experimental set-up.  

B. Experimental Procedure  
Three healthy, right-handed subjects (age 25.3±5.5 years) 
with no history of neurological disorders participated in this 
experiment. Experiments were approved by MIT’s 
Committee on the Use of Humans as Experimental Subjects 
and by the Institutional Review Board of UCSD. Informed 
written consent was obtained from all subjects. 
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Subjects were comfortably seated in front of a computer 
screen and held the handle of the wrist robotic device in their 
right hand (Figure 1). Velcro straps at the upper arm and 
distal forearm minimized arm movement. The screen 
displayed 8 outer targets (diameter 2.5 cm) placed on a circle 
and a central target. Outer targets were presented in a 
pseudo-random order and the central target was presented 
following presentation of an outer target. Subjects were 
instructed to move the handle of the robot to make the cursor 
reach the target that was presented. The motor task required 
wrist flexion/extension and radial/ulnar deviation (30 and 15 
degrees rotation). The amount of subjects’ wrist rotation was 
mapped to the position of a cursor also shown on the screen.  
The maximum time allotted for movement from the central 
target to an outer target or from an outer target to return was 
1.4 seconds. At time t=0 one of the outer targets was 
illuminated on the screen. The outer target might remain lit 
(control condition) or shift mid-movement to another target 
requiring a movement correction (shift condition). Targets 
remained lit for 1.4 seconds.  For the first 0.7 seconds of this 
period, the target was one color and then turned to a 
different color.  Subjects were instructed to reach the target 
about when its color changed. If the target changed location 
(shift condition), the subject was instructed to move toward 
the new target location. The shift occurred at 0.4 seconds 
with 50% probability. No specific instructions on movement 
speed, endpoint accuracy, or type of trajectory to be 
generated were given to the subject. All subjects performed 
a total of 1280 movements (640 movements from the central 
to the outer targets and 640 movements back). Three-minute 
rest breaks were given after every 160 movements. Only the 
movements from the central to the outer targets were 
analyzed. Subjects were allowed to practice until they were 
comfortable with the motor task. 
 

C. Kinematic Data Analysis 
Speed profiles of movements from the central to the outer 
targets were calculated as root-square of the sum of squared 
velocity components. Velocity components were obtained 
from the first-time derivatives of position data smoothed 
with a low-pass 12 Hz zero-phase FIR filter. Gaussian-
shaped submovements were extracted from the movement 
speed profiles using a greedy algorithm as described in [7]. 
For each subject, submovements with the highest peak were 
selected from each movement trial (one submovement for 
the control and two submovements for the shift condition) 
and their parameters were calculated (onset, time to peak 
value, and offset).  
 

D. EEG Data Analysis 
EEG analysis was performed using the EEGLAB toolbox 
[17] for Matlab (MathWorks, Natick, MA). After re-
referencing to the average reference, EEG data were high-
pass filtered with a 1 Hz zero-phase FIR filter to remove 
offset and trend and downsampled at 128 Hz. Following 
removal of data sections containing artifacts identified via 
visual inspection, EEG data were further inspected for 

artifacts with a procedure based on Independent Component 
(IC) and dipole analysis as described in [17] [18]: IC scalp 
maps and frequency spectra were inspected, and ICs that 
displayed features indicative of artifacts were removed. 
Dipoles models were fit to the remaining components using 
the DIPFIT plug-in for EEGLAB and localized within a 
three-shell boundary element model of the Montreal 
Neurological Institute standard brain. Only the ICs whose 
dipoles resided within the brain volume of the head model 
and displayed less than 15% residual variance were retained. 
An average of 12±2.6 ICs per subject was retained. Cleaned 
EEG data were generated by back-projecting the retained 
ICs to the electrodes.  
EEG activity was then epoched 200 ms prior to and 1400 ms 
after the presentation of the outer target or visual stimulus, 
for which linear de-trend and baseline correction procedures 
were applied. Epochs were aligned and averaged, separately 
for each condition (control or shift). ERPs were computed 
separately for each subject relative to the 200 ms pre-
stimulus baseline. An average of 300.66±9.07 epochs and 
317.33±26.35 epochs per subject was retained for the control 
and shift condition respectively. For each subject similarities 
among ERP topographical scalp maps at different time 
instants were quantified with Pearson’s correlation 
coefficients.  

III. RESULTS  

A. Control Condition 
Wrist speed profiles were similar across subjects, 
demonstrating single peak/bell-shaped characteristics (see 
Figure 2, left panel). The results of speed profiles 
submovement decomposition are presented in Table I. 
Submovement onsets were at 240.6±29.8 ms after stimulus 
onset (target presentation) and submovement peak values 
were reached at 424.16±43.01 ms after stimulus onset. 

 
 
Figure 2: Speed profiles (red) and submovements (green) for 
the control (left) and shift (right) condition. The main 
submovements are defined as the submovement with the 
highest peaks (blue line), as detailed in Section II.  
 
Figure 3, top shows typical ERP topographical scalp maps. 
Figure 4, left shows a typical ERP-image plot and signal for 
electrode C1 (over contralateral motor cortex). A slow 
negative potential was observed before target presentation (0 
ms), followed by a positive potential (a feature enhanced by 
our signal processing technique) observed consistently 
across subjects at 197.9±18.01 ms (i.e. 226.3±27.12 ms prior 
to submovement peak) and by a negative potential. 
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B. Shift Condition 
Movement was initially directed towards the first target and 
then changed direction and moved to the second target. 
Speed profiles displayed two main peaks, which 
corresponded to the movement towards the first and the 
second target (see Figure 2, right panel). Tables II and III 
summarize the results of submovement decomposition. The 
first and second submovements started respectively at 
238.06±29.33 ms and 697.56±66.38 ms after stimulus onset; 
peak values for the first and second submovement were 
reached at 422.36±44.27 and 889.06±77.99 ms after 
stimulus onset, respectively.  
 

 

 
Figure 3: Topographical ERP scalp series for subject 1 for 
control (top) and shift (bottom) condition. Target was 
presented at 0 ms. At latencies 0-500 ms maps are similar. 
For the shift condition, maps at 600-1000 ms are very 
similar to maps at 200-500 ms. 
 
In the pre-shift phase of the shift condition, topographical 
scalp maps were extremely similar to the maps associated to 
the control condition, indicating a similar underlying cortical 
activation (compare Figure 3, bottom with Figure 3, top). 
Pearson’s correlation coefficients between the control and 
shift condition topographical scalp maps were 0.89±0.05 at 
100 ms, 0.99±0.005 at 200 ms, 0.87±0.19 at 300 ms and 
0.95± 0.03 at 400 ms, and for each subject correlations were 
highly significant. After target-shift occurred, scalp maps 
observed prior target-shift reoccurred. Specifically, the scalp 
maps we observed at 200 ms (similar for all subjects and 
occurring concurrently to the onset of the first submovement 
which averaged 238.06 ms) re-occurred at 600-700 ms 
depending on the subject (concurrent with the onset of the 
second submovement, which averaged 697.56 ms) as 
indicated by the high and significant positive correlations 
between scalp maps summarized in Table IV. The activation 
we observed at 300 ms re-occurred at 800-1100 ms, 
depending on the subject, as indicated by the high and 
significant positive correlations reported in Table V. 

 
Figure 4: ERP image of channel C1 for the control (left) and 
shift (right) condition for subject 1. Amplitudes of EEG 
recordings during individual trials are shown. The vertical 
black line indicates onset of visual stimulus. The ERP signal 
is shown as the blue trace at the bottom of each panel. 
 

Table I: Latencies of submovement onset, peak, and offset 
for the control condition (mean, standard deviation). 
Latency of submovement peak compared to ERP positive 
peak is reported in the 5th column. 
 

Table II: Similar to Table I, for the shift condition. Data 
refer to the first submovement /ERP positive peak in the shift 
condition. 

Table III: Similar to Table I, for the shift condition. Data 
refer to the second submovement /ERP positive peak in the 
shift condition. 
 
The right panel of Figure 4 presents a typical ERP-image 
plot and signal for electrode C1. In the time interval 0-400 
ms, the ERP was extremely similar to that recorded in the 
control condition (Figure 4, left). A positive ERP peak was 
observed consistently across subjects at 184.89±23.86 ms, 
i.e. 237.47±20.53 ms prior to the peak of the first kinematic 
submovement. After 400 ms (target shift), the ERP 
displayed a second positive peak, consistently across 

 
Subm 
Onset 
(ms) 

Subm 
Peak  
(ms) 

Subm 
Offset  
(ms) 

Latency  
ERP Peak  

(ms) 
Subj1 214.6  

(49.2) 
385.0  
(50.9) 

555.6  
(70.0) 

197.58 

Subj2 234.0 
(91.6) 

417.3 
(82.2) 

601.7 
(101.4) 

229.86 

Subj3 273.2 
(68.0) 

470.2 
(58.8) 

667.3 
(85.6) 

251.49 

 
Subm 
Onset 
(ms) 

Subm 
Peak  
(ms) 

Subm 
Offset 
 (ms) 

Latency 
ERP Peak  

(ms) 
Subj1 208.0 

(45.5) 
381.5 
(38.6) 

555  
(59.9) 

217.44 

Subj2 239.6 
(87.6) 

416.2 
(68.0) 

593.1 
(81.8) 

236.52 

Subj3 266.6 
(69.9) 

469.4 
(52.4) 

672.3 
(73.2) 

258.47 

 
Subm 
Onset 
(ms) 

Subm 
Peak 
(ms) 

Subm 
Offset 

      (ms) 

Latency 
ERP Peak  

(ms) 
Subj1 677.0 

(76.8) 
874.0 
(70.8) 

1070.6 
(98.8) 

178.69 

Subj2 643.9 
(79.9) 

825.8 
(69.7) 

1007.7 
(86.2) 

255.49 

Subj3 771.8 
(118.8) 

967.4 
(109.6) 

1160.1 
(119.3) 

193.97 
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subjects, at 679.68±102.45 ms, i.e. 209.38± 40.65 ms prior 
to the peak of the second submovement.   

 
Table IV (left): Pearson’s correlation coefficients between 
topographical scalp maps at 0.2 s and topographical scalp 
maps at 0-1.4 s, at 0.1 s intervals. * indicates statistical 
significance. Topographical scalp maps displayed at 0.2 s 
reappeared at 0.6 -0.7 s, as highlighted in gray.  
Table V (right): Pearson’s correlation coefficients between 
topographical scalp maps at 0.3 s and topographical scalp 
maps at 0-1.4 s, at 0.1 s intervals. Maps displayed at 0.3 s 
reappeared at 0.8 s-1.1 s as highlighted in gray. 

IV. DISCUSSION 
How the CNS controls upper limb motion and modifies 
online motor commands to cope with changes that occur in 
the environment is not fully understood. A number of studies 
on unimpaired subjects have suggested that such complex 
motor behavior is constructed by superposing simpler 
movements or submovements that have a stereotyped shape 
and whose features are modulated by motor task demands 
(see for example [2]). Behavioral studies on stroke patients 
have corroborated this hypothesis by showing that the 
movements performed by stroke individuals display 
stereotyped and isolated submovements, which tend to blend 
as motor recovery progresses [8] [9]. Specifically, increases 
in motor smoothness displayed by stroke patients, both in 
the acute and chronic phase of recovery, can be explained by 
a submovement-based model [8]. Changes in submovement 
parameters have provided the basis for objectively 
quantifying both the quality of patients’ movements and the 
level of motor generalization elicited by intervention [9]. 
Here we used a high-density EEG to investigate neural 
activation underlying motor corrections. We showed that the 
generation of each kinematic submovement was consistently 
accompanied by the occurrence of stereotyped cortical 
activation. First we showed that each submovement was 

accompanied by the occurrence of stereotyped ERP 
topographical scalp maps. Specifically all subjects displayed 
similar scalp activations at 200-300 ms (onset of the first 
submovement in both conditions) and these activations 
reoccurred concurrently with the onset of the second 
submovement in the post-shift phase of the shift condition. 
Furthermore, we showed that positive ERP peaks recorded 
over the contralateral motor cortex (C1) were time-locked to 
kinematic submovement peaks. In particular, they occurred 
about 224 ms prior to kinematic submovement peaks. The 
steoreotyped character we observed in neural activations 
underlying submovements is consistent with the hypothesis 
that continuous movement is generated and controlled via 
discrete submovements.  
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  Time   Subj1  Subj2   Subj3 

0s -0.95* -0.72* -0.65* 

0.1s -0.97* -0.48* -0.75* 

0.2s -0.95* -0.78* -0.82* 

0.3s 1* 1* 1* 

0.4s 0.68* 0.26* 0.41* 

0.5s 0.74* 0.35* 0.35* 

0.6s -0.96* 0.05 -0.65* 

0.7s -0.91* -0.14 0.05 

0.8s 0.83* -0.44* -0.55* 

0.9s 0.96* -0.19 0.61* 

1.0s 0.86* -0.48* 0.80* 

1.1s -0.82* 0.63* 0.85* 

1.2s -0.77* 0.63* -0.04 

1.3s -0.79* 0.10 -0.72* 

1.4s -0.94* 0.64* -0.50* 

  Time   Subj1  Subj2   Subj3 

0s 0.98* 0.86* 0.91* 

0.1s 0.95* 0.71* 0.87* 

0.2s 1* 1* 1* 

0.3s -0.95* -0.78* -0.82* 

0.4s -0.72* -0.70* -0.66* 

0.5s -0.65* -0.37* -0.35* 

0.6s 0.97* 0.11 0.85* 

0.7s 0.87* 0.57* 0.24* 

0.8s -0.89* 0.33* 0.67* 

0.9s -0.91* -0.15 -0.75* 

1.0s -0.81* 0.44* -0.92* 

1.1s 0.94* -0.78* -0.97* 

1.2s 0.89* -0.17 0.03 

1.3s 0.76* 0.35* 0.83* 

1.4s 0.95* -0.54* 0.65* 

7432


